The Vertebrate Body Axis: Evolution and Mechanical Function1

نویسندگان

  • T. J. KOOB
  • J. H. LONG
چکیده

SYNOPSIS. The body axis of vertebrates is an integrated cylinder of bones, connective tissue, and muscle. These structures vary among living and extinct vertebrates in their orientation, composition, and function in ways that render useless simplistic models of the selective pressures that may have driven the evolution of the axis. Instead, recent experimental work indicates that the vertebrate axis serves multiple mechanical functions simultaneously: bending the body, storing elastic energy, transmitting forces from limbs, and ventilating the lungs. On the biochemical level, research on human intervertebral discs has shown that collagens resist tension and torsion while proteoglycans bind water to resist compression. This molecular behavior predicts mechanical behavior of the entire joint, which, in turn helps determine the mechanical behavior of the vertebral column. The axial skeleton, in turn, is reconfigured by axial muscles that work by way of three-dimensional connective tissues that derive mechanical advantage for the muscle force by using the skin to increase leverage. Models may eventually help determine which evolutionary changes in the vertebrate body axis have had important functional and possibly adaptational consequences. Current reconstruction of the hypothetical stem lineage of early chordates and vertebrates suggests that the gradual mineralization of the vertebral elements, appearance of fin rays and new median fins, and transverse and then horizontal segmentation of the axial musculature are all features correlated with increases in swimming speed, maneuverability, and body size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the bilaterian body plan: what have we learned from annelids?

Annelids, unlike their vertebrate or fruit fly cousins, are a bilaterian taxon often overlooked when addressing the question of body plan evolution. However, recent data suggest that annelids offer unique insights on the early evolution of spiral cleavage, anteroposterior axis formation, body axis segmentation, and head versus trunk distinction.

متن کامل

Developmental Mechanism of Limb Field Specification along the Anterior–Posterior Axis during Vertebrate Evolution

In gnathostomes, limb buds arise from the lateral plate mesoderm at discrete positions along the body axis. Specification of these limb-forming fields can be subdivided into several steps. The lateral plate mesoderm is regionalized into the anterior lateral plate mesoderm (ALPM; cardiac mesoderm) and the posterior lateral plate mesoderm (PLPM). Subsequently, Hox genes appear in a nested fashion...

متن کامل

Hox Genes and the Evolution of Vertebrate Axial Morphology Experiment (1995)

In 1995, researchers Ann Burke, Craig Nelson, Bruce Morgan, and Cliff Tabin in the US studied the genes [5] that regulate the construction of vertebra in developing chick [6] and mouse [7] embryos, they showed similar patterns of gene regulation [8] across both species, and they concluded that those patterns were inherited from an ancestor common to all vertebrate animals. The group analyzed th...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network.

Uncovering how a new gene acquires its function and understanding how the function of a new gene influences existing genetic networks are important topics in evolutionary biology. Here, we demonstrate nonconservation for the embryonic functions of Drosophila Bonus and its newest vertebrate relative TIF1-γ/TRIM33. We showed previously that TIF1-γ/TRIM33 functions as an ubiquitin ligase for the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000